Powdery mildew (Erysiphaceae) on Calibrachoa hybrids in Germany, Nicaragua and the USA

Brielmaier-Liebetanz U¹, Field AE², Warfield CY² and Braun U³*

¹Julius Kühn-Institut (JKI), Institut für Pflanzenschutz in Gartenbau und Forst, Messeweg 11/12, 38104 Braunschweig, Germany
²Ball Horticultural Company, 622 Town Rd, West Chicago, IL 60185, USA
³Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle/S., Germany

Brielmaier-Liebetanz U, Field AE, Warfield CY, Braun U 2015 – Powdery Mildew (Erysiphaceae) on Calibrachoa hybrids in Germany and the USA. Plant Pathology & Quarantine 5 (1), 1–5, Doi 10.5943/ppq/5/1/1

Abstract
Cultivated Calibrachoa hybrids were previously thought to be resistant to powdery mildew, but infections have been recently encountered in Germany, USA and Nicaragua. The exclusive development of asexual morphs (anamorphs) led to the question as to which powdery mildew species might be involved as causal agents. Based on inoculation experiments and molecular sequence analyses, it was determined that powdery mildew infections on Calibrachoa in Europe (Germany), North America (USA), and Central America (Nicaragua) were found to be caused by the plurivorous Podosphaera xanthii. The anamorph is a typical Fibroidium characterized by conidia formed in chains (catenescent), containing distinct fibrosin bodies. Calibrachoa powdery mildew caused by P. xanthii could be easily transferred to cucumber, squash and Verbena ×hybrida and vice versa in the latter case. Attempts to inoculate petunias failed. In addition to P. xanthii, two additional powdery mildew species were found infecting Calibrachoa ×hybrida in Germany. The first, characterized by having lobed hyphal appressoria and conidia formed singly, can be assigned to Pseudoidium neolycopersici, and the second species, readily distinguishable by its very long conidiophores, conidia in chains with sinuate outline and nipple-shaped hyphal appressoria, belongs to Euoidium longipes. In the course of the current examinations, E. longipes was also found on Verbena ×hybrida, which represents the first record of this species on a non-solanaceous host.

Key words – Erysiphales – Euoidium longipes – Podosphaera xanthii – Pseudoidium neolycopersici – Solanaceae – Petunia

Introduction
Since its introduction in the mid-1990s as an ornamental plant, Calibrachoa has become the second largest vegetative bedding plant in North America and Europe based on the number of cuttings produced and sold (M. Miller, personal communication). Calibrachoa ‘Double Ruby’ was...

Powdery mildew infections on Calibrachoa were only recently observed in Germany (on non-commercial genotypes) where it was previously thought that Calibrachoa was resistant to powdery mildew. However, observations and examinations of naturally infected Calibrachoa hybrids had been made in the USA (Warfield 2011). European as well as North American Calibrachoa powdery mildew only occurs as an asexual morph (anamorph), fruiting bodies (chasmothecia) are not formed. Three different powdery mildew species have been encountered in the course of the present examinations. Based on indistinct to nipple-shaped hyphal appressoria, conidia formed in chains and conspicuous fibrosin bodies, one of the mildews can easily be classified as Fibroidium (R.T.A. Cook et al.) R.T.A. Cook & U. Braun, the anamorph of Podosphaera Kunze (Braun & Cook 2012). However, plants of various genera belonging to the Solanaceae may be hosts of two different species of the latter genus, namely the recently described Podosphaera solanacearum U. Braun and P. xanthii (Castagne) U. Braun & Shishkoff (Braun & Cook 2012). The two species are discriminated by traits of the ascomata, but their asexual morphs are indistinguishable. This led to the question which species might be involved as the causal agent of this Calibrachoa powdery mildew disease. Inoculation experiments and molecular sequence analysis were carried out to answer this question. Two additional anamorphic powdery mildews observed on Calibrachoa hybrids proved to be morphologically quite distinct from the Podosphaera anamorph and pertain to Euoidium Y.S. Paul & J.N. Kapoor (Golovinomyces (U. Braun) Heluta anamorph) and Pseudoidium Y.S. Paul (Erysiphe DC. anamorph).

Materials & Methods

The fungal material was examined by standard light microscopy using oil immersion (bright field and phase contrast), but without any staining. Thirty measurements (× 1000 magnification) of conidia and other structures were made, with the extremes given in parentheses.

To confirm the identification of the North American isolate, total genomic DNA was extracted from Calibrachoa leaves visibly infected with powdery mildew. Leaves were collected in April 2011 from infected plants growing in a trial greenhouse in coastal California. DNA isolation was based on a modified protocol described by Dellaporta et al. (1983). The complete internal transcribed spacer (ITS) region of rDNA, including 5.8S rDNA, the 3' end of 18S rDNA and the 5' end of 28S rDNA, was amplified and sequenced with primer pair ITS1-ITS4 using procedures outlined in White et al. (1990). PCR reactions were carried out using GoTaq Flexi DNA polymerase (Promega, Madison, Wisconsin) in a thermal cycler (2720 Geneamp, Life Technologies Corporation). The PCR DNA products were cleaned using a commercial kit following the manufacturer's protocol (QIAquick PCR Purification kit, Qiagen Valencia, CA). Visualization of the PCR products was obtained by electrophoresis in 1.8% agarose gels in TBE buffer. Direct sequencing of the PCR products was performed by the DNA Facility of the Iowa State University Office of Biotechnology (Ames, Iowa). Sequencher software (Gene Codes Corporation, Ann Arbor, MI) was utilized to obtain a consensus sequences for the amplified region. The resulting 536 bp sequence was deposited in GenBank, as Podosphaera xanthii (Accession no. KP256814). The obtained sequence was used in the BLASTN 2.2.25+ program (NCBI http://www.ncbi.nlm.nih.gov/) to determine taxon identity based on similarity between sequences expressed as percent sequence identity.

Inoculation experiments were conducted on Cucumis sativus, Verbena ×hybrida and Calibrachoa ×hybrida. Two young cucumber plants ‘Delikatess’, as well as four detached leaves in double petri plates, were inoculated by brush application with the Podosphaera anamorph (Fibroidium) originating from Calibrachoa hybrids. Four young plants of Verbena ×hybrida ‘Obsession White’ were treated in the same way. Conversely, 12 in vitro plantlets of a Calibrachoa genotype with known susceptibility to powdery mildew were inoculated with conidia originating from Verbena ×hybrida. Inoculated plant material was incubated in a growth chamber at 20°C and
12 hours light. Non inoculated plants kept separately under the same conditions were used as controls.

Transfer experiments with powdery mildew from Calibrachoa to Petunia were performed under greenhouse conditions. Two Calibrachoa hybrid plants predominantly infected with a Podosphaera anamorph were placed between four plants of Petunia hybrids known to be susceptible to powdery mildew.

The identity of the developing powdery mildew was microscopically checked. Voucher herbarium specimens are deposited in the Herbarium of the Martin Luther University, Halle (Saale), Germany.

Results

Three different powdery mildews have been observed on Calibrachoa ×hybrida. One of them, detected in Germany, Nicaragua, and the USA, is morphologically characterized by the formation of thin white patches on leaves, composed of branched superficial hyphae, 3–8 µm wide, septate, thin-walled, smooth, with indistinct to somewhat nipple-shaped hyphal appressoria. The conidiophores are straight, erect, composed of cylindrical foot-cells, 30–70 × 9–12 µm, followed by 1–2 shorter cells, giving rise to catenescen conidia, ellipsoid-doliiform, 25–35 × 15–21 µm, with conspicuous fibrosin bodies (herbarium material deposited as HAL 2611 F on Calibrachoa hybrid, Germany, Niedersachsen, Braunschweig, 9 Oct. 2013, U. Briemmaier-Liebetanz). Based on these morphological characteristics, this powdery mildew can readily be classified as Fibroidium, the anamorph of Podosphaera. However, the identification of a particular species based only on the anamorph was not possible.

Mixed infections of two additional, morphologically distinct powdery mildews have also been found on Calibrachoa in Germany. The most abundant of these differs from P. xanthii by the formation of lobed hyphal appressoria and conidia formed singly (hyphae 3–8 µm wide; hyphal appressoria solitary or mostly in opposite pairs, slightly lobed to multi-lobed, 2–9 µm diam.; conidiophores arising from upper surface or slightly lateral from the mother cell of superficial hyphae, more or less centrally or mostly towards one end of the cell, erect, straight, up to about 100 µm long, foot-cells cylindrical 20–45 × 8–10 µm, followed by 1–2 cells, shorter than the foot-cell, about as long or even longer; conidia formed singly, ellipsoid-doliiform, 28–50 × 13–20 µm, position of germ tubes perihilar, short to moderately long, apex with lobed to multi-lobed appressorium). These characteristics closely match those of Pseudoidium neolycopersici (L. Kiss) L. Kiss (in Braun & Cook 2012), except for more variability in the length of the cells following the conidiophore foot-cells. Material has been deposited as P. neolycopersici at HAL (on Calibrachoa ×hybrida, Germany, Niedersachsen, Braunschweig, 9 Oct. 2013, U. Briemmaier-Liebetanz, HAL 2612 F). On leaves infected with P. neolycopersici, visible colonies of Euoidium longipes (Noordel. & Loer.) U. Braun & R.T.A. Cook were also present. E. longipes, was easily discernible by its very long conidiophores mostly composed of a relatively short foot-cell followed by a very long cell, about 60–300 µm long, and 0–4 short cells, conidia in chains with sinuate outline, without fibrosin bodies and nipple-shaped hyphal appressoria. The occurrence of E. longipes on Verbena ×hybrida under greenhouse conditions was an additional, interesting observation during the course of the present examinations (material deposited as HAL 2665 F and HAL 2666 F).

Comprehensive descriptions and illustrations of the powdery mildew species concerned have recently been published by Braun & Cook (2012), which can be used as reference and source for comparison.

Inoculation experiments

Inoculation and host range experiments with powdery mildew inoculum from naturally infected Calibrachoa hybrids in Germany and the USA showed interesting results. It was possible to transfer this powdery mildew to cucumber (Germany), squash (USA) and Verbena ×hybrida, all principal hosts of Podosphaera xanthii, and vice versa. A Fibroidium anamorph from Verbena
X. xhybrida was successfully transferred to Calibrachoa hybrids in Germany. On the other hand, attempts to transfer the Calibrachoa Fibroidium onto petunias failed in all German and North American experiments.

Phylogenetic analysis

A GenBank BLAST search of the complete ITS sequence obtained from the North American Calibrachoa isolate showed 100% similarity with the ITS sequence of numerous Podosphaera isolates including Podosphaera xanthii (AB046985.1, on Verbena xhybrida, USA), P. xanthii (AB040339.1, on Saintpaulia sp., Australia), P. phaseoli (Z.Y. Zhao) U. Braun & S. Takam. (GG927253.1, on Vigna unguiculata, China), P. balsaminae (Wallr.) U. Braun & S. Takam. (FJ625796.1, on Impatiens balsamina, China), and P. fusca (Fr.) U. Braun & Shishkoff (KJ698669.1, on Cucurbita pepo, Italy). All of these powdery mildews belong to P. xanthii. P. phaseoli has been reduced to synonyms with P. xanthii, and Podosphaera on Impatiens balsamina refers to P. xanthii as well (Braun & Cook 2012). True P. balsaminae is confined to Impatiens nolitangere in Asia and Europe and is morphologically and genetically distinct. The use of the name P. balsaminae for powdery mildew collections on Impatiens balsamina is a case of misapplication. P. fusca (s. str.) is now confined to powdery mildew on Doronicum spp. (Braun & Cook 2012). The nucleotide sequence of the P. xanthii collected in December 2014 from calibrachoa plants under cultivation in Nicaragua had 100% identity with the rDNA ITS sequence of the North American (California) isolate.

Key to powdery mildews occurring on Calibrachoa xhybrida

The following key is intended to facilitate the identification of asexual morphs of powdery mildews on Calibrachoa xhybrida, and includes confirmed and potential species (marked by an asterisk).

1. Hyphal appressoria lobed, mostly in opposite pairs; foot-cells of the conidiophores relatively short, about 20–60 × 6–10 μm; conidia formed singly.. Pseudoidium neolycopersici
2. Edge line of chained immature conidia crenate; fresh conidia with distinct fibrosin bodies
 1. Hyphal appressoria indistinct to nipple-shaped, mostly solitary; foot-cells of the conidiophores often longer (>60 μm) and wider above, about 10–14 μm; conidia catenate (formed in true chains).. Podosphaera xanthii
 2. Edge line of chained immature conidia sinuate; conidia without fibrosin bodies.......................... 4
 3. Width of the conidiophores distinctly increasing from base to top, foot-cells 40–90 μm long, followed by 1–2 often longer cells, about 50–300 μm long ... Euoidium longipes
 4. Foot-cells 95–180 μm long; on Solanaceae, Australia.. *Euoidium lycopersici
 5. Foot-cells shorter, 30–100 μm; on hosts of various genera of the Solanaceae (found worldwide in greenhouses) ...* Golovinomyces orontii

Discussion

In conclusion, the powdery mildew detected on Calibrachoa xhybrida in Europe as well as North and Central America, characterized by cateneseent conidia with fibrosin bodies, was confirmed as the plurivorous Podosphaera xanthii based on morphology, pathogenicity assays and molecular analysis of the complete internal transcribed spacer sequence. P. xanthii on cucurbits, Verbena xhybrida and other hosts of this species should be considered as potential sources of infection on Calibrachoa xhybrida. These results suggest a potential threat to calibrachoa by P. xanthii wherever this ornamental plant is cultivated.
In the USA as well as in Germany, transfers of the calibrachoa powdery mildew onto several varieties of petunias, using both brush transfers and wet inoculations, failed to infect any of the petunia varieties inoculated, which conflicts with Catlin (2012) who listed *Podosphaera xanthii* as a causal agent of petunia powdery mildew, but without any further information or references.

It appears that *Pseudoidium neolycopersici*, the common tomato powdery mildew, is able to infect calibrachoa, at least under greenhouse conditions. This is the first record of this powdery mildew on *Calibrachoa ×hybrida*. *Euoidium longipes* on calibrachoa is also new and hitherto not yet reported. The observation of *E. longipes* on *Verbena ×hybrida* represents the first record of this species on a non-solanaceous host.

Euoidium hucopersici (Cooke & Massee) U. Braun & R.T.A. Cook and *Golovinomyces orontii* (Castagne) Heluta, two additional species on hosts of the Solanaceae, are potential powdery mildew threats for calibrachoa, although not yet observed on calibrachoa.

References